Skip to main content

Try in Colab

We support images, video, audio, and more. Log rich media to explore your results and visually compare your runs, models, and datasets. Read on for examples and how-to guides.
For details, see the Data types reference.
For more details, check out a demo report about visualize model predictions or watch a video walkthrough.

Pre-requisites

In order to log media objects with the W&B SDK, you may need to install additional dependencies. You can install these dependencies by running the following command:
pip install wandb[media]

Images

Log images to track inputs, outputs, filter weights, activations, and more.
Autoencoder inputs and outputs
Images can be logged directly from NumPy arrays, as PIL images, or from the filesystem. Each time you log images from a step, we save them to show in the UI. Expand the image panel, and use the step slider to look at images from different steps. This makes it easy to compare how a model’s output changes during training.
It’s recommended to log fewer than 50 images per step to prevent logging from becoming a bottleneck during training and image loading from becoming a bottleneck when viewing results.
  • Logging arrays as Images
  • Logging PIL Images
  • Logging Images from Files
Provide arrays directly when constructing images manually, such as by using make_grid from torchvision.Arrays are converted to png using Pillow.
import wandb

with wandb.init(project="image-log-example") as run:

    images = wandb.Image(image_array, caption="Top: Output, Bottom: Input")

    run.log({"examples": images})
We assume the image is gray scale if the last dimension is 1, RGB if it’s 3, and RGBA if it’s 4. If the array contains floats, we convert them to integers between 0 and 255. If you want to normalize your images differently, you can specify the mode manually or just supply a PIL.Image, as described in the “Logging PIL Images” tab of this panel.

Image overlays

  • Segmentation Masks
  • Bounding Boxes
Log semantic segmentation masks and interact with them (altering opacity, viewing changes over time, and more) via the W&B UI.
Interactive mask viewing
To log an overlay, provide a dictionary with the following keys and values to the masks keyword argument of wandb.Image:
  • one of two keys representing the image mask:
    • "mask_data": a 2D NumPy array containing an integer class label for each pixel
    • "path": (string) a path to a saved image mask file
  • "class_labels": (optional) a dictionary mapping the integer class labels in the image mask to their readable class names
To log multiple masks, log a mask dictionary with multiple keys, as in the code snippet below.See a live exampleSample code
mask_data = np.array([[1, 2, 2, ..., 2, 2, 1], ...])

class_labels = {1: "tree", 2: "car", 3: "road"}

mask_img = wandb.Image(
    image,
    masks={
        "predictions": {"mask_data": mask_data, "class_labels": class_labels},
        "ground_truth": {
            # ...
        },
        # ...
    },
)
Segmentation masks for a key are defined at each step (each call to run.log()).
  • If steps provide different values for the same mask key, only the most recent value for the key is applied to the image.
  • If steps provide different mask keys, all values for each key are shown, but only those defined in the step being viewed are applied to the image. Toggling the visibility of masks not defined in the step do not change the image.

Image overlays in Tables

  • Segmentation Masks
  • Bounding Boxes
Interactive Segmentation Masks in Tables
To log Segmentation Masks in tables, you will need to provide a wandb.Image object for each row in the table.An example is provided in the Code snippet below:
table = wandb.Table(columns=["ID", "Image"])

for id, img, label in zip(ids, images, labels):
    mask_img = wandb.Image(
        img,
        masks={
            "prediction": {"mask_data": label, "class_labels": class_labels}
            # ...
        },
    )

    table.add_data(id, mask_img)

with wandb.init(project="my_project") as run:
    run.log({"Table": table})

Histograms

  • Basic Histogram Logging
  • Flexible Histogram Logging
If a sequence of numbers, such as a list, array, or tensor, is provided as the first argument, we will construct the histogram automatically by calling np.histogram. All arrays/tensors are flattened. You can use the optional num_bins keyword argument to override the default of 64 bins. The maximum number of bins supported is 512.In the UI, histograms are plotted with the training step on the x-axis, the metric value on the y-axis, and the count represented by color, to ease comparison of histograms logged throughout training. See the “Histograms in Summary” tab of this panel for details on logging one-off histograms.
run.log({"gradients": wandb.Histogram(grads)})
GAN discriminator gradients
If histograms are in your summary they will appear on the Overview tab of the Run Page. If they are in your history, we plot a heatmap of bins over time on the Charts tab.

3D visualizations

Log 3D point clouds and Lidar scenes with bounding boxes. Pass in a NumPy array containing coordinates and colors for the points to render.
point_cloud = np.array([[0, 0, 0, COLOR]])

run.log({"point_cloud": wandb.Object3D(point_cloud)})
The W&B UI truncates the data at 300,000 points.

NumPy array formats

Three different formats of NumPy arrays are supported for flexible color schemes.
  • [[x, y, z], ...] nx3
  • [[x, y, z, c], ...] nx4 | c is a category in the range [1, 14] (Useful for segmentation)
  • [[x, y, z, r, g, b], ...] nx6 | r,g,b are values in the range [0,255]for red, green, and blue color channels.

Python object

Using this schema, you can define a Python object and pass it in to the from_point_cloud method.
  • pointsis a NumPy array containing coordinates and colors for the points to render using the same formats as the simple point cloud renderer shown above.
  • boxes is a NumPy array of python dictionaries with three attributes:
    • corners- a list of eight corners
    • label- a string representing the label to be rendered on the box (Optional)
    • color- rgb values representing the color of the box
    • score - a numeric value that will be displayed on the bounding box that can be used to filter the bounding boxes shown (for example, to only show bounding boxes where score > 0.75). (Optional)
  • type is a string representing the scene type to render. Currently the only supported value is lidar/beta
point_list = [
    [
        2566.571924017235, # x
        746.7817289698219, # y
        -15.269245470863748,# z
        76.5, # red
        127.5, # green
        89.46617199365393 # blue
    ],
    [ 2566.592983606823, 746.6791987335685, -15.275803826279521, 76.5, 127.5, 89.45471117247024 ],
    [ 2566.616361739416, 746.4903185513501, -15.28628929674075, 76.5, 127.5, 89.41336375503832 ],
    [ 2561.706014951675, 744.5349468458361, -14.877496818222781, 76.5, 127.5, 82.21868245418283 ],
    [ 2561.5281847916694, 744.2546118233013, -14.867862032341005, 76.5, 127.5, 81.87824684536432 ],
    [ 2561.3693562897465, 744.1804761656741, -14.854129178142523, 76.5, 127.5, 81.64137897587152 ],
    [ 2561.6093071504515, 744.0287526628543, -14.882135189841177, 76.5, 127.5, 81.89871499537098 ],
    # ... and so on
]

run.log({"my_first_point_cloud": wandb.Object3D.from_point_cloud(
     points = point_list,
     boxes = [{
         "corners": [
                [ 2601.2765123137915, 767.5669506323393, -17.816764802288663 ],
                [ 2599.7259021588347, 769.0082337923552, -17.816764802288663 ],
                [ 2599.7259021588347, 769.0082337923552, -19.66876480228866 ],
                [ 2601.2765123137915, 767.5669506323393, -19.66876480228866 ],
                [ 2604.8684867834395, 771.4313904894723, -17.816764802288663 ],
                [ 2603.3178766284827, 772.8726736494882, -17.816764802288663 ],
                [ 2603.3178766284827, 772.8726736494882, -19.66876480228866 ],
                [ 2604.8684867834395, 771.4313904894723, -19.66876480228866 ]
        ],
         "color": [0, 0, 255], # color in RGB of the bounding box
         "label": "car", # string displayed on the bounding box
         "score": 0.6 # numeric displayed on the bounding box
     }],
     vectors = [
        {"start": [0, 0, 0], "end": [0.1, 0.2, 0.5], "color": [255, 0, 0]}, # color is optional
     ],
     point_cloud_type = "lidar/beta",
)})
When viewing a point cloud, you can hold control and use the mouse to move around inside the space.

Point cloud files

You can use the from_file method to load in a JSON file full of point cloud data.
run.log({"my_cloud_from_file": wandb.Object3D.from_file(
     "./my_point_cloud.pts.json"
)})
An example of how to format the point cloud data is shown below.
{
    "boxes": [
        {
            "color": [
                0,
                255,
                0
            ],
            "score": 0.35,
            "label": "My label",
            "corners": [
                [
                    2589.695869075582,
                    760.7400443552185,
                    -18.044831294622487
                ],
                [
                    2590.719039645323,
                    762.3871153874499,
                    -18.044831294622487
                ],
                [
                    2590.719039645323,
                    762.3871153874499,
                    -19.54083129462249
                ],
                [
                    2589.695869075582,
                    760.7400443552185,
                    -19.54083129462249
                ],
                [
                    2594.9666662674313,
                    757.4657929961453,
                    -18.044831294622487
                ],
                [
                    2595.9898368371723,
                    759.1128640283766,
                    -18.044831294622487
                ],
                [
                    2595.9898368371723,
                    759.1128640283766,
                    -19.54083129462249
                ],
                [
                    2594.9666662674313,
                    757.4657929961453,
                    -19.54083129462249
                ]
            ]
        }
    ],
    "points": [
        [
            2566.571924017235,
            746.7817289698219,
            -15.269245470863748,
            76.5,
            127.5,
            89.46617199365393
        ],
        [
            2566.592983606823,
            746.6791987335685,
            -15.275803826279521,
            76.5,
            127.5,
            89.45471117247024
        ],
        [
            2566.616361739416,
            746.4903185513501,
            -15.28628929674075,
            76.5,
            127.5,
            89.41336375503832
        ]
    ],
    "type": "lidar/beta"
}

NumPy arrays

Using the same array formats defined above, you can use numpy arrays directly with the from_numpy method to define a point cloud.
run.log({"my_cloud_from_numpy_xyz": wandb.Object3D.from_numpy(
     np.array(  
        [
            [0.4, 1, 1.3], # x, y, z
            [1, 1, 1], 
            [1.2, 1, 1.2]
        ]
    )
)})
run.log({"my_cloud_from_numpy_cat": wandb.Object3D.from_numpy(
     np.array(  
        [
            [0.4, 1, 1.3, 1], # x, y, z, category 
            [1, 1, 1, 1], 
            [1.2, 1, 1.2, 12], 
            [1.2, 1, 1.3, 12], 
            [1.2, 1, 1.4, 12], 
            [1.2, 1, 1.5, 12], 
            [1.2, 1, 1.6, 11], 
            [1.2, 1, 1.7, 11], 
        ]
    )
)})
run.log({"my_cloud_from_numpy_rgb": wandb.Object3D.from_numpy(
     np.array(  
        [
            [0.4, 1, 1.3, 255, 0, 0], # x, y, z, r, g, b 
            [1, 1, 1, 0, 255, 0], 
            [1.2, 1, 1.3, 0, 255, 255],
            [1.2, 1, 1.4, 0, 255, 255],
            [1.2, 1, 1.5, 0, 0, 255],
            [1.2, 1, 1.1, 0, 0, 255],
            [1.2, 1, 0.9, 0, 0, 255],
        ]
    )
)})
run.log({"protein": wandb.Molecule("6lu7.pdb")})
Log molecular data in any of 10 file types:pdb, pqr, mmcif, mcif, cif, sdf, sd, gro, mol2, or mmtf. W&B also supports logging molecular data from SMILES strings, rdkit mol files, and rdkit.Chem.rdchem.Mol objects.
resveratrol = rdkit.Chem.MolFromSmiles("Oc1ccc(cc1)C=Cc1cc(O)cc(c1)O")

run.log(
    {
        "resveratrol": wandb.Molecule.from_rdkit(resveratrol),
        "green fluorescent protein": wandb.Molecule.from_rdkit("2b3p.mol"),
        "acetaminophen": wandb.Molecule.from_smiles("CC(=O)Nc1ccc(O)cc1"),
    }
)
When your run finishes, you’ll be able to interact with 3D visualizations of your molecules in the UI. See a live example using AlphaFold
Molecule structure

PNG image

wandb.Image converts numpy arrays or instances of PILImage to PNGs by default.
run.log({"example": wandb.Image(...)})
# Or multiple images
run.log({"example": [wandb.Image(...) for img in images]})

Video

Videos are logged using the wandb.Video data type:
run.log({"example": wandb.Video("myvideo.mp4")})
Now you can view videos in the media browser. Go to your project workspace, run workspace, or report and click Add visualization to add a rich media panel.

2D view of a molecule

You can log a 2D view of a molecule using the wandb.Image data type and rdkit:
molecule = rdkit.Chem.MolFromSmiles("CC(=O)O")
rdkit.Chem.AllChem.Compute2DCoords(molecule)
rdkit.Chem.AllChem.GenerateDepictionMatching2DStructure(molecule, molecule)
pil_image = rdkit.Chem.Draw.MolToImage(molecule, size=(300, 300))

run.log({"acetic_acid": wandb.Image(pil_image)})

Other media

W&B also supports logging of a variety of other media types.

Audio

run.log({"whale songs": wandb.Audio(np_array, caption="OooOoo", sample_rate=32)})
A maximum of 100 audio clips can be logged per step. For more usage information, see audio-file.

Video

run.log({"video": wandb.Video(numpy_array_or_path_to_video, fps=4, format="gif")})
If a numpy array is supplied we assume the dimensions are, in order: time, channels, width, height. By default we create a 4 fps gif image (ffmpeg and the moviepy python library are required when passing numpy objects). Supported formats are "gif", "mp4", "webm", and "ogg". If you pass a string to wandb.Video we assert the file exists and is a supported format before uploading to wandb. Passing a BytesIO object will create a temporary file with the specified format as the extension. On the W&B Run and Project Pages, you will see your videos in the Media section. For more usage information, see video-file.

Text

Use wandb.Table to log text in tables to show up in the UI. By default, the column headers are ["Input", "Output", "Expected"]. To ensure optimal UI performance, the default maximum number of rows is set to 10,000. However, users can explicitly override the maximum with wandb.Table.MAX_ROWS = {DESIRED_MAX}.
with wandb.init(project="my_project") as run:
    columns = ["Text", "Predicted Sentiment", "True Sentiment"]
    # Method 1
    data = [["I love my phone", "1", "1"], ["My phone sucks", "0", "-1"]]
    table = wandb.Table(data=data, columns=columns)
    run.log({"examples": table})

    # Method 2
    table = wandb.Table(columns=columns)
    table.add_data("I love my phone", "1", "1")
    table.add_data("My phone sucks", "0", "-1")
    run.log({"examples": table})
You can also pass a pandas DataFrame object.
table = wandb.Table(dataframe=my_dataframe)
For more usage information, see string.

HTML

run.log({"custom_file": wandb.Html(open("some.html"))})
run.log({"custom_string": wandb.Html('<a href="https://mysite">Link</a>')})
Custom HTML can be logged at any key, and this exposes an HTML panel on the run page. By default, we inject default styles; you can turn off default styles by passing inject=False.
run.log({"custom_file": wandb.Html(open("some.html"), inject=False)})
For more usage information, see html-file.
I