# chatbot.py
import openai
import streamlit as st
import wandb
from set_env import set_env
import weave
_ = set_env("OPENAI_API_KEY")
_ = set_env("WANDB_API_KEY")
# highlight-next-line
wandb.login()
# highlight-next-line
weave_client = weave.init("feedback-example")
oai_client = openai.OpenAI()
def init_states():
"""Set up session_state keys if they don't exist yet."""
if "messages" not in st.session_state:
st.session_state["messages"] = []
if "calls" not in st.session_state:
st.session_state["calls"] = []
if "session_id" not in st.session_state:
st.session_state["session_id"] = "123abc"
# highlight-next-line
@weave.op
def chat_response(full_history):
"""
Calls the OpenAI API in streaming mode given the entire conversation history so far.
full_history is a list of dicts: [{"role":"user"|"assistant","content":...}, ...]
"""
stream = oai_client.chat.completions.create(
model="gpt-4", messages=full_history, stream=True
)
response_text = st.write_stream(stream)
return {"response": response_text}
def render_feedback_buttons(call_idx):
"""Renders thumbs up/down and text feedback for the call."""
col1, col2, col3 = st.columns([1, 1, 4])
# Thumbs up button
with col1:
if st.button("👍", key=f"thumbs_up_{call_idx}"):
st.session_state.calls[call_idx].feedback.add_reaction("👍")
st.success("Thanks for the feedback!")
# Thumbs down button
with col2:
if st.button("👎", key=f"thumbs_down_{call_idx}"):
st.session_state.calls[call_idx].feedback.add_reaction("👎")
st.success("Thanks for the feedback!")
# Text feedback
with col3:
feedback_text = st.text_input("Feedback", key=f"feedback_input_{call_idx}")
if (
st.button("Submit Feedback", key=f"submit_feedback_{call_idx}")
and feedback_text
):
st.session_state.calls[call_idx].feedback.add_note(feedback_text)
st.success("Feedback submitted!")
def display_old_messages():
"""Displays the conversation stored in st.session_state.messages with feedback buttons"""
for idx, message in enumerate(st.session_state.messages):
with st.chat_message(message["role"]):
st.markdown(message["content"])
# If it's an assistant message, show feedback form
if message["role"] == "assistant":
# Figure out index of this assistant message in st.session_state.calls
assistant_idx = (
len(
[
m
for m in st.session_state.messages[: idx + 1]
if m["role"] == "assistant"
]
)
- 1
)
# Render thumbs up/down & text feedback
if assistant_idx < len(st.session_state.calls):
render_feedback_buttons(assistant_idx)
def display_chat_prompt():
"""Displays the chat prompt input box."""
if prompt := st.chat_input("Ask me anything!"):
# Immediately render new user message
with st.chat_message("user"):
st.markdown(prompt)
# Save user message in session
st.session_state.messages.append({"role": "user", "content": prompt})
# Prepare chat history for the API
full_history = [
{"role": msg["role"], "content": msg["content"]}
for msg in st.session_state.messages
]
with st.chat_message("assistant"):
# Attach Weave attributes for tracking of conversation instances
with weave.attributes(
{"session": st.session_state["session_id"], "env": "prod"}
):
# Call the OpenAI API (stream)
result, call = chat_response.call(full_history)
# Store the assistant message
st.session_state.messages.append(
{"role": "assistant", "content": result["response"]}
)
# Store the weave call object to link feedback to the specific response
st.session_state.calls.append(call)
# Render feedback buttons for the new message
new_assistant_idx = (
len(
[
m
for m in st.session_state.messages
if m["role"] == "assistant"
]
)
- 1
)
# Render feedback buttons
if new_assistant_idx < len(st.session_state.calls):
render_feedback_buttons(new_assistant_idx)
def main():
st.title("Chatbot with immediate feedback forms")
init_states()
display_old_messages()
display_chat_prompt()
if __name__ == "__main__":
main()