def get_model(configs):
backbone = tf.keras.applications.mobilenet_v2.MobileNetV2(
weights="imagenet", include_top=False
)
backbone.trainable = False
inputs = layers.Input(
shape=(configs["image_size"], configs["image_size"], configs["image_channels"])
)
resize = layers.Resizing(32, 32)(inputs)
neck = layers.Conv2D(3, (3, 3), padding="same")(resize)
preprocess_input = tf.keras.applications.mobilenet.preprocess_input(neck)
x = backbone(preprocess_input)
x = layers.GlobalAveragePooling2D()(x)
outputs = layers.Dense(configs["num_classes"], activation="softmax")(x)
return models.Model(inputs=inputs, outputs=outputs)