import wandb
with wandb.init(project="my-models") as run:
# Train your model
model = train_model()
# Create an artifact for the model
model_artifact = wandb.Artifact(
name="my-model",
type="model",
description="ResNet-50 trained on ImageNet subset",
metadata={
"architecture": "ResNet-50",
"dataset": "ImageNet-1K",
"accuracy": 0.95
}
)
# Add model files to the artifact
model_artifact.add_file("model.pt")
model_artifact.add_dir("model_configs/")
# Log the artifact to W&B
run.log_artifact(model_artifact)