import numpy as np
import wandb
# Define class names for wildlife
wildlife_class_names = ["Lion", "Tiger", "Elephant", "Zebra"]
# Simulate true labels for 200 animal images (imbalanced distribution)
wildlife_y_true = np.random.choice(
[0, 1, 2, 3],
size=200,
p=[0.2, 0.3, 0.25, 0.25],
)
# Simulate model predictions with 85% accuracy
wildlife_preds = [
y_t
if np.random.rand() < 0.85
else np.random.choice([x for x in range(4) if x != y_t])
for y_t in wildlife_y_true
]
# Initialize W&B run and log confusion matrix
with wandb.init(project="wildlife_classification") as run:
confusion_matrix = wandb.plot.confusion_matrix(
preds=wildlife_preds,
y_true=wildlife_y_true,
class_names=wildlife_class_names,
title="Simulated Wildlife Classification Confusion Matrix",
)
run.log({"wildlife_confusion_matrix": confusion_matrix})